Repairing weld cracks in стальные конструкции is a critical task that requires careful planning, execution, and inspection to ensure the structural integrity is restored and the crack doesn’t return. This is a job for critical structures and should ALWAYS be performed by qualified welders following approved procedures under the supervision of experienced engineers or inspectors.

Repairing Cracks in Steel Structure Welds

steel structures

1. Assessment and Planning:

Безопасность в первую очередь: Implement all necessary safety precautions. This includes proper PPE (welding mask, перчатки, leathers, respirator if needed), fire watch, вентиляция, hot work permits, lockout/tagout procedures if near machinery, and securing the area.

Identify the Crack: Locate the crack precisely. Determine its full extent (длина, depth, and whether it extends through the thickness). Неразрушающее тестирование (Непрерывный) methods like Magnetic Particle Testing (ГОРА), Liquid Penetrant Testing (PT), or Ultrasonic Testing (UT) are often essential to find the crack tips accurately.

Determine the Cause (Ключевой!): This is the MOST important step to prevent recurrence. Why did the crack form?

Fatigue: Cyclic loading leading to crack initiation and propagation.

High Residual Stress: From the original welding or fabrication process.

Hydrogen Embrittlement: Hydrogen trapped in the weld/Heat Affected Zone (HAZ). Often causes delayed cracking (hours or days after welding).

Poor Weld Quality: Lack of fusion, lack of penetration, пористость, slag inclusions acting as stress risers.

Incorrect Weld Procedure: Wrong consumables, incorrect preheat/interpass temperature, wrong parameters.

Poor Joint Design: Creates stress concentrations.

Перегрузка: The structure was subjected to loads beyond its design capacity.

Base Metal Defects: Laminations or inclusions in the steel itself.

Consult Codes and Standards: Refer to relevant welding codes (например, AWS D1.1 Structural Welding Code – Steel, Еврокод 3, п.) and project specifications for requirements regarding crack repair.

Develop a Repair Procedure: Based on the cause, material type, толщина, расположение, and code requirements, a detailed Welding Procedure Specification (WPS) for the repair must be developed or selected. This specifies:

Method of crack removal.

Joint preparation details.

Сварочный процесс (СМАВ, Fcaw, ГМАВ, ПИЛА).

Filler metal type and size.

Preheat requirements.

Interpass temperature control.

Post-Weld Heat Treatment (PWHT) если необходимо.

NDT requirements before, during, and after repair.

Квалифицированный персонал: Ensure the welders performing the repair are qualified according to the specific WPS and relevant codes. Ensure qualified NDT technicians and inspectors are involved.

2. Repair Execution:

steel structures

Crack Removal: The entire crack, including its tips, must be completely removed. This is typically done by:

Gouging: Air Carbon Arc Gouging (CAC-A) is common and efficient but requires care not to introduce excessive carbon into the base metal (usually followed by grinding). Plasma Arc Gouging (PAG) is another option.

Шлифование: Using abrasive wheels. More controlled but slower, suitable for smaller cracks or finishing after gouging.

For more detailed information on how to repair steel structure welding cracks, пожалуйста, нажмите здесь: https://www.meichensteel.com/a/news/repairing-cracks-in-steel-structure-welds.html

Designing steel building frames is a complex engineering task that requires specialized knowledge of structural mechanics, material science, relevant building codes, and analysis software. This process MUST be performed by a qualified and licensed Structural Engineer. This guide provides an overview of the steps involved, not a substitute for professional engineering services.

Customized Steel Building Frames

Steel Building Frames

Фаза 1: Project Definition & Conceptualization

Define Project Requirements & Scope:

Building Use & Occupancy: What is the building for (офис, склад, производство, retail, residential)? This determines live loads, code requirements, and potentially specific functional needs (например, crane loads).

Размеры & Geometry: Размер, ширина, clear height, roof slope, overall shape. Are there mezzanines, specific column-free spans required?

Расположение: Crucial for determining environmental loads (wind speed, snow load, seismic zone). Also impacts local building codes and foundation design.

Architectural Requirements: Integration with the architectural design, desired aesthetics, cladding type (influences girt/purlin spacing and loads), locations of doors, windows, and other openings.

MEP Integration: Requirements for HVAC, plumbing, electrical systems – routing, openings, equipment weight.

Budget & Schedule: Constraints that influence design choices (material efficiency, complexity).

Select Structural System & Conceptual Layout:

Based on requirements, choose the primary framing type:

Portal Frames (Rigid Frames): Common for warehouses, industrial buildings. Efficient for clear spans. Connections are typically moment-resisting.

Braced Frames: Uses diagonal bracing (tension/compression or tension-only) to resist lateral loads. Columns primarily take axial load, beams take gravity loads. Connections can often be simpler (pinned/shear).

Moment-Resisting Frames: Relies on rigid connections between beams and columns to resist lateral loads. Often used in multi-story buildings where bracing isn’t desired architecturally.

Trusses: Efficient for long spans, especially roofs. Composed of smaller members arranged in triangles.

Develop Preliminary Layout: Determine bay spacing (distance between frames), frame spacing (along the building length), column locations, and bracing locations (если это применимо). Consider efficiency, architectural constraints, and load paths.

Steel Building Frames

Фаза 2: Определение нагрузки & Analysis

Determine Loads (Code Compliance is Mandatory):

Identify and quantify all applicable loads based on relevant building codes (например, ASCE 7 in the US, Eurocodes in Europe, National Building Code of Canada).

More details on how to custom design steel building frames can be found at: https://www.meichensteel.com/a/news/customized-steel-building-frames.html

Steel structure construction is a widely adopted method in modern architecture and engineering due to its strength, долговечность, and efficiency. From high-rise buildings and industrial warehouses to bridges and stadiums, steel provides a versatile solution for a wide range of construction needs.

The steel structure construction process involves a series of systematic steps that ensure the structural integrity and safety of the final build. These steps typically include planning and design, material procurement, изготовление, перевозка, site preparation, and on-site erection. Each phase plays a crucial role in transforming raw steel components into a fully functional, load-bearing framework.

Steel structure construction process

Steel structure

Фаза 1: Planning and Design

Conceptual Design & Feasibility: The client, architect, and engineers define the project requirements, бюджет, and overall building concept. Initial studies determine if a steel structure is the most suitable option.

Structural Engineering & Analysis: Structural engineers perform detailed calculations to determine loads (dead load, live load, ветер, seismic, п.) and design the steel frame. This includes selecting appropriate steel grades, member sizes (балки, столбцы), connection types (bolted, welded), and bracing systems for stability.

Detailed Drawings & Specifications: Architects and engineers produce detailed construction drawings (plans, elevations, sections, connection details) and technical specifications. These documents outline exactly how the structure should be built, the materials to use, and the quality standards required.

Shop Drawings: The steel fabricator (selected later) will create highly detailed shop drawings based on the engineering drawings. These drawings specify exact dimensions, cuts, hole locations, weld types, bolt types, surface finishes, and assembly marks for each individual steel member. These must be reviewed and approved by the structural engineer before fabrication begins.

Erection Plan: Often developed collaboratively between the engineer, fabricator, and erector, this plan outlines the sequence of lifting and assembling the steel members on site, crane locations, safety procedures, and temporary bracing requirements.

Фаза 2: Fabrication (Off-Site)

This happens in a controlled factory environment (the fabrication shop):

Material Procurement: The fabricator orders the required raw steel shapes (I-beams, W-sections, каналы, angles, тарелки, hollow sections) from steel mills based on the approved shop drawings and material specifications.

Резка & Shaping: Steel members are cut to precise lengths using saws, shears, or thermal cutting (plasma, oxy-fuel).

Drilling/Punching: Holes for bolts are accurately drilled or punched according to the shop drawings.

Fitting & Сварка: Компоненты (например, base plates, connection plates, stiffeners) are fitted together and welded as specified in the shop drawings. Skilled, certified welders perform this work.

Поверхностная обработка: Steel members are cleaned (usually by shot blasting) to remove mill scale and rust. потом, a primer paint or other specified coating (like galvanizing) is applied for corrosion protection.

Контроль качества (QC): Throughout fabrication, QC checks are performed (dimensional checks, weld inspection using visual or non-destructive testing methods like UT/MT/PT, coating thickness checks).

Marking & Маркировка: Each finished piece is clearly marked with an identification number/code corresponding to the shop drawings and erection plan, ensuring it can be easily identified on site.

Фаза 3: Перевозка

Загрузка & Logistics: Fabricated steel members are carefully loaded onto trucks or trailers in a sequence that often aligns with the planned erection sequence on site.

Shipping: Steel is transported from the fabrication shop to the construction site. Special permits and escorts may be required for oversized loads.

Steel structure

Фаза 4: Подготовка сайта

This happens concurrently with or before fabrication/transportation:

Foundation Construction: Concrete foundations (footings, pile caps, raft foundations) are constructed based on the engineering design. Важно, anchor bolts are accurately embedded into the concrete where steel columns will be placed. Their position and elevation are critical.

Site Logistics: The site is prepared with clear access roads, designated laydown areas for storing steel deliveries, and stable pads for crane setup.

Фаза 5: Erection (On-Site Assembly)

This is the process of assembling the steel frame on site:

Receiving & Sorting: Steel deliveries are received, checked against delivery tickets, and sorted in the laydown area according to their erection marks and the erection plan.

Crane Setup: Mobile or tower cranes capable of lifting the heaviest steel members are positioned strategically on site.

For more detailed information about the steel structure construction process, пожалуйста, нажмите здесь: https://www.meichensteel.com/a/news/steel-structure-construction-process.html

Flange slewing bearings are robust components, but they can experience problems over time. Here are some common issues and their solutions.

Flange Slewing Bearing Common Problems and Solutions

Flange slewing bearings

1. Irregular Rotation or Jamming:

Проблема: The bearing rotates unevenly or gets stuck, even without a load. This could be due to the ring becoming out of round during transport or storage.

Причины: This issue should ideally be caught during the fitting process. If it occurs after installation, the bearing might have been deformed. In such cases, the bearing may need to be replaced. Ensure proper handling and storage to prevent this.

2. Abnormal Noise During Operation:

Проблема: Unusual sounds like squealing or grinding can indicate issues. Squealing often suggests insufficient lubrication, while grinding noises might mean internal wear or contamination.

Причины:

Squealing: Apply the correct type and amount of lubricant. Refer to the manufacturer’s recommendations for lubrication intervals and grease type (EP2 grease is often recommended).

Шлифование: Stop operation immediately and inspect the bearing for wear, наносить ущерб, or foreign material. Clean and relubricate or replace the bearing if necessary.

Flange slewing bearings

3. Lubricant Leakage:

Проблема: Grease leaking from the seals.

Причины:

Over-lubrication: Ensure you are not lubricating too frequently. A typical cycle is 150-250 часов, but adjust based on the operating intensity.

Thinned grease: Check if hydraulic or gear oil from the slewing motor has contaminated the bearing grease, making it thin. Repair any leaks in the motor seals.

Incorrect grease: Using the wrong type of grease can cause it to thin, especially with temperature increases. Use the manufacturer-recommended grease.

Damaged seals: Carefully inspect the seals for damage or displacement and replace them if necessary.

4. Excessive Wear and Increased Clearance:

Проблема: Со временем, the rolling elements and raceways wear, leading to increased play or tilting.

For more detailed information on common problems and solutions of flange slewing bearings, пожалуйста, нажмите здесь: https://www.mcslewingbearings.com/a/news/flange-slewing-bearing-common-problems-and-solutions.html

Корректировка зазора поворотный подшипник имеет решающее значение для обеспечения плавной работы, уменьшение износа, и продлить срок службы. Процесс варьируется в зависимости от типа подшипника (Одно рядовой мяч, Двойной мяч, или кросс-роллер) и спецификации производителя.

Метод регулировки очистки подшипников

slewing bearing

1. Первоначальная оценка

Перед регулировкой очистки подшипника, Важно оценить состояние подшипника и оборудования:

Осмотрите подшипник: Ищите признаки износа, наносить ущерб, или коррозия. Если подшипник значительно носит или поврежден, Это может потребовать замены.

Проверьте спецификации производителя: Убедитесь, что вы знаете рекомендуемые значения клиренса, предоставленные производителем подшипника. Эти значения необходимы для настройки правильной корректировки.

2. Требуемые инструменты

Чтобы приспособиться зазор с подшипником, Вам понадобятся следующие инструменты:

Индикатор циферблата или инструмент измерения лазера

Оценочные датчики

Гаечный ключ

Прокладки или проставки (если это применимо)

Джек (Если поднять структуру необходимо)

Смазка (Удельная смазка или масло для подшипника)

3. Измерение существующего клиренса

Прежде чем вносить какие-либо корректировки, Важно измерить текущий клиренс. Это поможет определить, находится ли подшипник в пределах желаемой толерантности или необходимы корректировка.

Осевой клиренс:

Поместите индикатор циферблата, перпендикулярный гоночной трассе.

Поднимите верхнюю конструкцию (если это применимо) Слегка используя разъем или механизм подъема.

Измерьте осевое движение вдоль оси подшипника.

Радиальный зазор:

Прикрепите индикатор циферблата параллельно радиальной поверхности подшипника.

Применить боковую силу к структуре, чтобы проверить движение в радиальном направлении.

Наклонный клиренс:

Измерьте угловой клиренс, поместив индикатор циферблата в нескольких точках вдоль подшипника. Проверьте наличие наклона или углового движения.

Запишите измерения и сравните их со спецификациями. Если разрешение выходит из приемлемого диапазона, Перейти к корректировке.

slewing bearing

4. Корректировка зазора

Процесс регулировки будет варьироваться в зависимости от конструкции подшипника. Есть два основных типа подшипников: регулируемый тип болта и типа передачи.

Для регулируемых подшипников типа болта:

Для получения более подробной информации о том, как отрегулировать очистку подшипника, пожалуйста, нажмите здесь: https://www.mcslewingbearings.com/a/news/slewing-bearing-clearance-adjustment-method.html

Lubricating a поворотный подшипник is critical for ensuring smooth operation, уменьшение износа, и продлить срок службы. Here’s a step-by-step guide on how to properly lubricate a slewing bearing.

There are generally two main areas that require lubrication:

The Raceway: This is where the rolling elements (шарики или ролики) run between the inner and outer rings.

The Gear Teeth: If the slewing bearing has integrated internal or external gear teeth.

Key Principles:

Right Lubricant: Using the correct type and grade of grease is paramount.

Right Amount: Too little or too much can cause problems.

Right Frequency: Lubrication intervals depend heavily on operating conditions.

Right Method: Applying the grease correctly ensures it reaches the critical areas.

Чистота: Contamination is a major enemy of bearings.

Slewing bearing lubrication

slewing bearing

я. Подготовка & Безопасность:

Consult the Manufacturer’s Manual: THIS IS THE MOST IMPORTANT STEP. The equipment or bearing manufacturer’s manual will specify the exact type of grease, the recommended lubrication frequency, and potentially specific procedures or grease fitting locations. Always prioritize their recommendations.

Безопасность в первую очередь:

Ensure the machine is shut down, de-energized, and properly locked out/tagged out (Сердце) according to your site’s procedures before performing any maintenance.

Носить соответствующее личное защитное оборудование (СИЗ), including safety glasses and gloves.

Gather Supplies:

Correct type and grade of grease (Как указано производителем, typically an EP lithium complex grease, often NLGI Grade 2).

Grease gun (manual or powered). Ensure it’s clean and loaded with the correct grease. Avoid mixing different grease types.

Clean rags or cloths.

Solvent (if needed for cleaning gear teeth, ensure compatibility).

Stiff brush (for cleaning gear teeth, если это применимо).

Small tool or pick (for cleaning grease fittings).

slewing bearing

II. Lubricating the Raceway:

Locate Grease Fittings: Find the grease fittings (zerks) located around the circumference of one of the bearing rings (usually the stationary one). There may be one, two, or several fittings spaced evenly.

Clean Fittings: Thoroughly clean the grease fittings and the area around them with a clean rag. Use a pick to remove any hardened grease or dirt from the fitting opening. This prevents contaminants from being injected into the bearing.

Attach Grease Gun: Securely attach the grease gun coupler to the fitting.

For more detailed information on slewing bearing lubrication, пожалуйста, нажмите здесь:https://www.mcslewingbearings.com/a/news/slewing-bearing-lubrication.html

А Фланцевой подшипник имеет монтажные отверстия, прямо просверленные в лицо внутреннего или внешнего кольца (или оба). Этот фланец позволяет прямую болтовы к вспомогательной структуре без необходимости отдельных зажимных колец, Часто упрощает монтажную договоренность.

Установка подшипника фланца

flange slewing bearing

Безопасность в первую очередь!

СИЗ: Носить соответствующее личное защитное оборудование (безопасные очки, перчатки, Стальные носки сапоги).

Подъем: Клегающие подшипники могут быть тяжелыми. Используйте подходящее подъемное оборудование (краны, поднимает, стропы) и методы. Никогда не поднимайте уплотнения или зубчатые зубы, если применимо.

Используйте назначенные подъемные точки, если предоставлены.

Блокировка/Tagout: Убедитесь, что оборудование, на котором установлен подшипник, правильно вынистируется и заблокирована/помечена перед началом работы.

Чистая область: Держите рабочую зону в чистоте и без препятствий.

Необходимые инструменты и материалы:

Новый фланцевой подшипник

Руководство по установке производителя

Подходящее подъемное снаряжение

Правильный класс, размер, и длины крепеж (болты, потенциально орехи и шайбы) – Крайне важно! Используйте новые крепежные элементы оценки, указанного производителем подшипника или оборудования (часто класс 10.9 или 12.9).

Калиброванное крутящее ключ(эс) покрытие необходимого диапазона крутящего момента

Оценочные датчики

Чистящие принадлежности (безворсовые салфетки, соответствующий растворитель)

Смазка для резьбы болта (Если указано производителем, например, Молибден дисульфидная паста)

Смазочный пистолет и правильный тип/оценка смазки (Как указано производителем)

Измерение инструментов (рулетка, штангенциркули)

Мягкий молоток (необязательный, Для незначительных корректировок)

Pry Bars (Используйте с крайней осторожностью и защитой, чтобы избежать повреждений)

Этапы установки:

flange slewing bearing

Фаза 1: Подготовка

Прочитайте руководство: Тщательно прочитайте и понимайте конкретное руководство по установке, предоставленное производителем подшипника. Обратите пристальное внимание на значения крутящего момента, Болт оценки, затягивание последовательностей, и требования к смазке.

Осмотрите подшипник:

Тщательно распаковать подшипник. Проверьте на любой ущерб доставке.

Убедитесь, что номер детали соответствует вашим требованиям.

Проверьте дату производства (Grease имеет срок годности).

Для получения более подробной информации о установке подшипника фланца, пожалуйста, нажмите здесь: https://www.mcslewingbearings.com/a/news/flange-slewing-bearing-installation.html

Alright, let’s get into the nitty-gritty of installing a печь для закалки стекла. This is a complex piece of machinery, so a professional approach with meticulous attention to detail is crucial for safety and optimal performance.

Установка с падающей печью в стекле

glass tempering furnace

Фаза 1: Pre-Installation and Site Preparation

Detailed Site Assessment:

A thorough inspection of the intended installation area is the first step. This involves verifying floor load capacity to support the furnace’s weight (which can be substantial).

Measurements of the space are taken to ensure adequate clearance around the furnace for operation, поддержание, and potential future removal or servicing.

Access routes for bringing in the large furnace components are carefully evaluated. This might involve planning for temporary removal of doors or even wall sections.

Utility Infrastructure Check and Preparation:

Electrical Power: The furnace’s power requirements (Напряжение, phase, текущий) are strictly adhered to. Dedicated electrical lines with appropriate circuit breakers and safety disconnects are installed by qualified electricians.

Gas Supply (если это применимо): If the furnace uses gas for heating, the gas line capacity, pressure requirements, and safety shut-off valves are meticulously checked and installed according to local codes.

Compressed Air: Many tempering furnaces rely on compressed air for various functions, such as cooling and operating pneumatic cylinders. The existing compressed air system’s capacity and pressure are verified, or a dedicated compressor with appropriate piping is installed.

Water Supply (если это применимо): Some advanced cooling systems might require a water supply. The water pressure, flow rate, and drainage system are assessed and prepared.

Вентиляционная система: Proper ventilation is critical to remove heat and any potential byproducts. The design and installation of the ventilation system must comply with environmental regulations and safety standards.

Foundation Preparation:

Depending on the furnace’s size and weight, a reinforced concrete foundation might be necessary to ensure stability and prevent settling. The foundation must be perfectly level.

Anchor bolts or embedded plates for securing the furnace frame are precisely positioned during the foundation pouring process.

Safety Perimeter and Access Control:

Before the furnace arrives, the installation area is clearly marked with safety barriers.

Access to the site is restricted to authorized personnel only.

glass tempering furnace

Фаза 2: Furnace Delivery and Positioning

Careful Unloading and Handling:

Specialized lifting equipment (краны, forklifts with sufficient capacity) is used to unload the furnace components from the transport vehicles.

Rigging and lifting procedures are meticulously planned and executed by experienced personnel to prevent damage to the equipment and ensure the safety of the workers.

For more detailed information about glass tempering furnace installation, пожалуйста, нажмите здесь: https://www.shencglass.com/en/a/news/glass-tempering-furnace-installation.html

Падающие печи for the architectural glass industry are designed to meet strict performance, безопасность, and quality standards. And the key properties of tempering furnaces specifically designed for the architectural glass industry. These furnaces are distinct due to the scale, требования к качеству, and types of glass used in buildings.

Performance of tempering furnaces for the architectural glass industry

Tempering furnaces

Large Size Capacity:

Architectural glass often comes in large sheets (standard float sizes, jumbo sizes). Furnaces must accommodate dimensions frequently reaching 3.3 meters wide and 6, 7, or even 12+ meters long.

The transport system (ролики) must be robust enough to handle the weight and dimensions of these large lites without causing damage or excessive deflection.

Advanced Convection Heating:

Crucial for Coated Glass (Низкоэмиссионный): Modern architectural glass heavily utilizes Low-E (низкоэмиссионный) coatings for energy efficiency. These coatings reflect infrared heat. Pure radiation heating struggles to heat coated glass evenly and efficiently without overheating the coating.

Forced Convection: These furnaces employ powerful forced convection systems (using heated air) alongside radiation. This allows for:

Faster heating cycles.

More uniform temperature distribution across the glass surface and through its thickness, regardless of coatings.

Reduced risk of overheating and damaging sensitive soft coatings.

Better processing of thicker glass.

Types of Convection: Can be top convection only, or more commonly, top and bottom convection for maximum efficiency and uniformity. Some use compressed air-assisted convection for even higher heat transfer rates.

Precise Temperature Control and Uniformity:

Achieving a consistent temperature (around 620-650°C / 1150-1200°Ф) across the entire large sheet is critical for avoiding optical distortion and ensuring proper tempering.

Sophisticated control systems use numerous thermocouples and/or pyrometers to monitor glass temperature in multiple zones within the furnace.

Advanced algorithms adjust heating elements (and convection flow) dynamically to ensure uniformity, compensating for edge effects or variations in glass loading.

Tempering furnaces

High-Performance Quenching System:

The quenching (rapid cooling) section uses high-pressure air blown through precisely positioned nozzles (top and bottom).

Must deliver powerful, uniform, and controllable airflow across the entire glass surface to create the necessary surface compression for strength and safety fragmentation.

Control over air pressure, nozzle distance, and potentially oscillating patterns is needed to optimize quenching for different glass thicknesses and types, minimizing distortion.

For more detailed information on the properties of tempering furnaces in the architectural glass industry, пожалуйста, нажмите здесь: https://www.shencglass.com/en/a/news/performance-of-tempering-furnaces-for-the-architectural-glass-industry.html

The goal of tempering is to heat glass uniformly to near its softening point (around 620°C) and then rapidly cool (quench) it with air jets. This creates compressive stress on the surface and tensile stress in the core, resulting in stronger, safer glass. Однако, achieving consistent quality (flatness, low distortion, uniform stress, no breakage) across different glass types (clear, coated, Низкоэмиссионный, patterned), толщины, and sizes is challenging. Intelligent control systems aim to address these challenges.

Glass Tempering Furnace Intelligent Control

glass tempering furnaces

Here are key aspects and techniques used in intelligent control systems for Стеклянные печи:

Advanced Sensing and Monitoring:

Thermal Scanners/Cameras: Provide detailed real-time temperature maps of the glass surface as it exits the furnace, crucial for identifying non-uniform heating.

Pyrometers: Multiple non-contact temperature sensors strategically placed within the furnace and quench.

Stress Measurement Systems: Online or offline systems (например, using photoelasticity) to measure residual stress patterns

Dimensional/Flatness Sensors: Laser or optical systems to measure glass flatness and warp.

Energy Consumption Monitoring: Tracking power usage of heaters and blowers.

Data Acquisition and Processing:

High-speed collection and storage of data from all sensors, furnace settings (heater power, convection levels, quench pressure, скорость конвейера), and glass properties (тип, толщина, размеры).

Data cleaning, filtering, and feature extraction to prepare data for analysis and modeling.

Sophisticated Modeling:

For more detailed information about the intelligent control system of glass tempering furnace, пожалуйста, нажмите здесь: https://www.shencglass.com/en/a/news/intelligent-control-system-for-glass-tempering-furnace.html