Welding manipulators are essential pieces of equipment in automated and semi-automated welding operations, designed to provide precise control over welding torches for consistent and high-quality welds. However, like all industrial machinery, welding manipulators are subject to wear, mechanical failures, and electrical issues over time. Knowing how to diagnose and repair a welding manipulator is crucial for maintaining production efficiency, ensuring workplace safety, and minimizing downtime.

Repairing a welding manipulator involves diagnosing common mechanical, electrical, and welding-related issues.

Welding Manipulator Repair

Welding manipulators

1. Identify the Problem

Before starting repairs, observe symptoms to narrow down the issue:

Mechanical Issues: Jerky movement, misalignment, excessive vibration, or unusual noises.

Electrical Issues: Power failure, motor not responding, or erratic control behavior.

Welding Issues: Poor arc stability, inconsistent wire feed, or irregular torch movement.

2. Common Repairs & Solutions

A. Mechanical Repairs

Check Rails & Guides

Issue: Misalignment or wear causing jerky movement.

Solution:

Clean and lubricate linear guides.

Adjust or replace worn-out rails/bearings.

Inspect Drive Mechanism

Issue: Faulty gears, belts, or chains.

Solution:

Tighten or replace loose/damaged belts/chains.

Grease gears or replace if teeth are worn.

Column & Boom Stability

Issue: Excessive vibration or wobbling.

Solution:

Tighten bolts and structural joints.

Check for cracks in the boom and repair with welding if needed.

B. Electrical & Motor Repairs

Motor Not Running

Check:

Power supply (fuses, breakers, voltage).

Motor brushes (for DC motors) or windings (for AC motors).

 

Gantry welding machines are specialized automated welding systems designed for high-precision, large-scale welding applications, particularly in industries such as shipbuilding, structural steel fabrication, and heavy machinery manufacturing. A gantry welding machine operates on a principle of automated movement and precise control of the welding head over a workpiece.

Gantry welding machine working principle and how to achieve 0.1mm welding precision

Gantry welding machines

Gantry Welding Machines Working Principle

Gantry Structure: The machine features an overhead bridge-like structure (the gantry) that spans the welding area. This gantry provides a stable and rigid framework for the welding process.

Multi-Axis Movement: A carriage or trolley carrying the welding head moves along the gantry (typically the X-axis). The gantry itself can also move along rails (the Y-axis), and the welding head often has vertical movement (the Z-axis). This multi-axis movement allows the welding head to reach any point within the machine’s working envelope.

Automated Control System: The movement of the gantry and the welding head is controlled by a sophisticated numerical control (CNC) system or a programmable logic controller (PLC). This system directs servo motors that drive the movement along each axis with high precision.

Welding Process Integration: The gantry system is integrated with various welding power sources and equipment (e.g., Submerged Arc Welding (SAW), Metal Inert Gas (MIG), Metal Active Gas (MAG)). The control system also manages the welding parameters such as voltage, current, wire feed speed, and travel speed.

Seam Tracking (Optional but crucial for precision): Advanced gantry welding machines often incorporate seam tracking systems. These systems use sensors (e.g., mechanical, laser, vision) to detect the actual weld joint in real-time and automatically adjust the welding head position to follow the seam accurately, even if the workpiece has slight variations or distortions.

Material Handling: While not directly part of the welding principle, gantry machines are often integrated with material handling systems (e.g., conveyors, positioners) to move and orient the workpiece efficiently.

Achieving 0.1mm Welding Precision

Gantry welding machines

Achieving such high welding precision (0.1mm) requires a combination of advanced technologies and meticulous engineering:

High-Precision Motion Control System:

High-Resolution Encoders: Servo motors on each axis must be equipped with high-resolution encoders to provide precise feedback on the welding head’s position.

This allows the control system to make minute adjustments to ensure accuracy.

More detailed information about the working principle of the gantry welding machine can be clicked to visit: https://www.bota-weld.com/en/a/news/gantry-welding-machine-working-principle.html

Choosing the right ball press machine is a critical step in setting up an efficient and profitable briquette production line. Whether you’re working with coal powder, metal fines, charcoal dust, or mineral residues, selecting a machine that fits your raw materials, production capacity, and budget will directly impact the quality and strength of your briquettes. In this guide, we’ll walk you through the key factors to consider when buying a ball press machine.

Ball Press Machine for Briquettes Selection

ball press machine

1. Raw Material Compatibility

The type of raw material you’ll be briquetting is paramount. Different machines are designed for specific materials and their characteristics (moisture content, particle size, binding properties).

Common Materials:

Biomass: Sawdust, wood chips, agricultural residues (straw, rice husks, bagasse, coffee husks, peanut shells), bamboo.

Coal/Charcoal: Coal powder, charcoal dust, coke dust, lignite, anthracite.

Minerals/Ores: Iron powder, mineral powder, oxidized scale, slag, gypsum, tailings, sludge, kaolin, activated carbon, metal fines.

Others: Quicklime powder, magnesium powder, refractory materials, ceramic materials.

Considerations:

Particle Size: Most ball press machines require the raw material to be finely ground (often less than 3mm, with a significant percentage below 1mm) for optimal briquette formation and strength. You may need a grinder or hammer mill as a pre-processing step.

Moisture Content: The ideal moisture content varies by material and machine, but it’s often around 8-10% for charcoal/coal and can be higher for some biomass.

Too much or too little moisture can significantly impact briquette quality.

2. Production Capacity

Determine your desired output. This will dictate the size and power of the machine you need.

Factors:

Amount of raw material available.

Required briquette output per hour/day (e.g., 1-2.5 t/h, 3-5 t/h, 5-8 t/h, up to 28 t/h for larger models).

Operating hours (single shift, continuous operation).

Calculation: For a basic estimation, consider the density of your briquettes and the volume they occupy, then factor in the machine’s efficiency and the time available for production.

3. Briquette Size and Shape

Ball press machines typically produce briquettes in various shapes, including:

More details about how to choose briquette press machine can be clicked to visit: https://www.zymining.com/en/a/news/ball-press-machine-for-briquettes-selection.html

Hammer crushers are widely used in mining, cement, metallurgy, and aggregate industries for crushing medium-hard materials such as limestone, coal, and gypsum. However, abnormal vibration during operation is a common issue that can severely impact machine performance and lifespan.Large vibrations in a hammer crusher are a common problem and can lead to premature wear, component failure, reduced efficiency, and safety hazards.

Reasons for Large Vibration of Hammer Crusher

hammer crusher

Rotor Imbalance (Most Common Cause):

Uneven Hammer Wear: Hammers wear down at different rates depending on their position and the feed material. If not managed, this creates a significant weight imbalance.

Incorrect Hammer Replacement: Replacing hammers with ones of different weights, or replacing only some hammers without balancing, will cause imbalance.

Hammers should always be replaced in sets (opposite pairs or full sets) and be weight-matched.

Broken or Missing Hammers/Pins: A broken hammer or a lost hammer pin will immediately create a severe imbalance.

Material Buildup: Sticky or wet material can build up unevenly on the rotor, hammers, or inside the rotor discs, adding weight to one side.

Bent Rotor Shaft: A bent shaft will cause the entire rotor assembly to wobble.

Rotor Disc Deformation: If the discs holding the hammers are bent or damaged.

Bearing Issues:

Worn or Damaged Bearings: Worn bearings develop excessive clearance (play), allowing the shaft to move erratically, leading to vibration. Damaged races or rolling elements also cause rough running.

Incorrect Bearing Lubrication: Too little, too much, or the wrong type of lubricant can cause bearings to overheat and fail.

Misaligned Bearing Housings: If the bearing housings are not perfectly aligned, they put undue stress on the bearings and shaft.

Loose Components:

Loose Foundation Bolts: If the crusher is not securely anchored to its foundation, it will vibrate excessively.

Loose Rotor Mounting Bolts: Bolts connecting the rotor to the shaft or bearing assemblies.

Loose Hammer Pins/Bolts: If hammer pins are loose, hammers can shift, contributing to imbalance and impact forces.

Loose Liner Plates or Grate Bars: Can vibrate independently or cause material to jam.

Operational Issues:

Overfeeding: Feeding too much material at once can choke the crusher, leading to uneven loads and vibration.

Feeding Uncrushable Material: Introducing tramp metal or excessively hard material can cause sudden shocks and damage, leading to vibrations.

More detailed information about the causes of high vibration of hammer crusher can be clicked to visit: https://www.zymining.com/en/a/news/reasons-for-large-vibration-of-hammer-crusher.html

A ball press machine, more commonly known as a briquetting machine or briquetter, is used to compress powdery or granular materials into solid, uniform shapes (briquettes), often resembling balls, pillows, ovals, or squares. This process offers several advantages like improved handling, storage, transportation, and utilization of fine materials.

Ball Press Machine Application

ball press machine

Metallurgical Industry:

Steelmaking: Briquetting iron ore fines, mill scale, converter dust, flue dust, and other iron-bearing materials for charging into blast furnaces or direct reduction plants. This recovers valuable materials and improves furnace operation.

Ferroalloy Production: Briquetting fines of manganese ore, chrome ore, nickel ore, etc., for smelting furnaces.

Non-Ferrous Metals: Briquetting dusts and fines from copper, zinc, lead, and aluminum processing for recycling and smelting.

Lime and Dolomite: Briquetting quicklime or dolomite fines for use as flux in steelmaking, reducing dust and improving handling.

Coal & Energy Industry:

Coal Briquetting: Compressing coal fines or dust into briquettes for industrial boilers, gasifiers, or domestic heating. This utilizes low-grade coal fines and reduces waste.

Coke Briquetting: Briquetting coke breeze (fine coke particles) for use in foundries or blast furnaces, recovering valuable fuel/reductant.

Charcoal Briquetting: Compressing charcoal powder (often with a binder) into briquettes for barbecue, industrial heating, or activated carbon production.

ball press machine

Chemical & Mineral Industry:

Fertilizers: While granulation is common, briquetting can sometimes be used for specific fertilizer materials or formulations to reduce dust and improve handling.

Salt Briquetting: Producing salt blocks or briquettes for animal licks or industrial applications.

Mineral Processing: Briquetting various mineral fines (e.g., fluorite, magnesite, bauxite) for easier handling, transportation, or feeding into subsequent processes like kilns or furnaces.

Refractory Materials: Briquetting fine refractory powders before firing.

Environmental Protection & Waste Recycling:

Flue Gas Desulfurization (FGD) Gypsum: Briquetting FGD gypsum powder, a byproduct of coal-fired power plants, for easier handling and potential use in construction materials (e.g., cement production).

More detailed information about the application of ball press can be clicked to visit: https://www.zymining.com/en/a/news/ball-press-machine-applications.html

Briquetting machines are essential in compressing various raw materials into compact, manageable briquettes for easier storage, transportation, and usage. However, one common operational challenge is machine jamming. A jammed briquetting machine can disrupt production, cause equipment damage, and increase maintenance costs. Understanding the root causes of jamming, the warning signs, and effective prevention strategies is crucial for maintaining smooth and efficient briquetting operations.

What should I do if the briquette machine jams

Briquetting machines

1. Immediate Safety Measures:

Stop the Machine: Immediately turn off the power to the briquette machine. Do not attempt to clear the jam while the machine is running.

Disconnect Power: For added safety, unplug the machine from its power source. This prevents any accidental start-up during the clearing process.

Wait for it to Stop Completely: Ensure all moving parts have come to a complete standstill before attempting to intervene.

2. Identify the Cause of the Jam:

Carefully inspect the machine to understand why it has jammed. Common causes include:

Material Blockage:

Oversized Material: Pieces of raw material that are too large to pass through the machine.

Foreign Objects: Rocks, metal pieces, or other debris mixed in with the raw material.

Wet or Sticky Material: Material with excessive moisture content or a sticky consistency can clump and cause blockages.

Inconsistent Material Size: A wide range of particle sizes can sometimes lead to bridging and jams.

Machine Issues:

Worn or Damaged Parts: A worn die, screw conveyor, or other internal components can impede material flow.

Improper Temperature: If the machine uses heat, incorrect temperature settings can affect material flow and cause sticking.

Insufficient Lubrication: Lack of lubrication can increase friction and lead to jams.

Overfeeding: Trying to process too much material at once can overload the machine.

Briquetting machines

3. How to Clear the Jam:

Refer to Your Machine’s Manual: Your briquette machine’s manual should provide specific instructions on how to clear jams and troubleshoot common issues. Always prioritize the manufacturer’s recommendations.

More detailed information about what to do when the briquette machine is stuck can be clicked to visit the: https://www.zymining.com/en/a/news/briquetting-machine-jam.html

Linear vibrating screens are highly versatile and can be used to screen a wide range of materials across various industries. The key is that the material needs to be able to flow and separate based on size when subjected to linear vibration.

Linear vibrating screen can screen materials

Double banana sieve

1. Mining & Quarrying:

* Ores: Iron ore, copper ore, gold ore, bauxite, manganese ore, etc. (for sizing, scalping, desliming)

* Coal: Sizing, dewatering, desliming

* Aggregates: Sand, gravel, crushed stone (for sizing into different product grades)

* Limestone, Granite, Basalt: For producing various construction materials

* Phosphate Rock, Potash: For fertilizer production

* Industrial Minerals: Clay, silica sand, feldspar, talc

2. Construction & Building Materials:

* Sand & Gravel: Grading for concrete and asphalt

* Crushed Stone: Sizing for road base, concrete aggregate

* Cement Raw Materials: (e.g., limestone, clay before grinding)

* Asphalt Reclaim (RAP): Sizing reclaimed asphalt pavement

* Lightweight Aggregates: Expanded clay, shale, perlite

3. Recycling & Waste Management:

* Construction & Demolition (C&D) Waste: Separating soil, aggregates, wood, plastics

* Municipal Solid Waste (MSW): Pre-sorting, separating organics

* Compost & Soil: Removing oversized particles, contaminants

* Glass Cullet: Sizing for recycling

* Plastic Flakes/Pellets: Sizing, removing fines

* Wood Chips, Sawdust, Bark: Sizing for fuel, mulch, or particleboard

* Scrap Metal: Removing dirt and fines

4. Agriculture & Food Processing:

* Grains: Wheat, corn, rice, barley, oats (cleaning, sizing)

* Seeds: Sizing and cleaning various crop seeds

* Fertilizers: Granular or powdered (sizing, de-dusting)

* Animal Feed: Pellets, crumbles (sizing, removing fines)

* Sugar, Salt: Sizing, de-lumping

* Flour, Spices, Coffee Beans, Tea Leaves: Sifting, grading

* Nuts & Legumes: Sizing, removing shells or debris

* Fruits & Vegetables (sometimes): For gentle sizing or dewatering of certain robust types

Single layer horizontal sieve

5. Chemical & Pharmaceutical Industries:

* Plastic Pellets & Powders: Sizing, de-dusting

* Resins: Sizing

* Detergent Powders: Sizing, de-lumping

* Pharmaceutical Powders & Granules: (often specialized, hygienic designs)

* Various Chemical Salts & Compounds: (e.g., soda ash, catalysts)

More detailed information about what materials can be screened by linear vibrating screen can be clicked to visit: https://www.hsd-industry.com/news/linear-vibrating-screen-can-screen-materials/

Slow discharge from a linear vibrating screen is a common issue that can significantly reduce screening efficiency and overall plant productivity. It means material is not moving across and off the screen deck as quickly as it should.

Reasons and solutions for slow discharge of linear vibrating screen

Cooperation Customer

I. Reasons Related to the Screen Mesh & Deck:

Blinding or Pegging of the Screen Mesh:

Reason: Fine particles get stuck in the openings of the screen mesh (blinding), or near-size particles get wedged in the openings (pegging). This reduces the effective open area, slowing down the passage of undersize material and causing oversize material to build up and discharge slowly.

Solution:

Regular Cleaning: Manually clean the mesh with brushes, pressure washers, or air lances.

Anti-Blinding Devices: Install bouncing balls, slider rings, or polyurethane stars beneath the screen mesh. These continuously tap the mesh from below, dislodging stuck particles.

Ultrasonic De-blinding Systems: For very fine or difficult materials, ultrasonic systems vibrate the mesh at high frequencies, preventing blinding.

Self-Cleaning Mesh: Use specialized screen media with flexible wires that vibrate independently to dislodge particles.

Adjust Mesh Tension: Ensure the mesh is properly tensioned. Sagging mesh can exacerbate blinding.

Incorrect Screen Mesh Aperture (Opening Size):

Reason: If the mesh openings are too small for the desired separation or for the bulk of the material, it will naturally process material slowly.

Solution:

Re-evaluate Application: Ensure the chosen mesh size is appropriate for the material characteristics and the desired cut point.

Consider a Coarser Mesh: If possible and acceptable for the product, use a slightly larger mesh opening.

Worn or Damaged Screen Mesh:

Reason: Torn, stretched, or excessively worn mesh can lose its tension, sag, and have inconsistent openings. This can lead to material pooling in areas and inefficient conveying.

Solution:

Inspect and Replace: Regularly inspect the mesh for wear and tear. Replace damaged sections or the entire mesh panel as needed.

Insufficient Screening Area:

Reason: The screen might be too small for the volume of material being fed onto it, leading to overloading.

Solution:

Reduce Feed Rate: If possible, reduce the amount of material being fed to the screen.

Upgrade Screen Size: If the feed rate cannot be reduced, a larger screen or an additional screen may be necessary.

Sagging Screen Mesh:

Reason: Improper tensioning or wear can cause the mesh to sag. Material accumulates in the sagged areas, slowing its progress.

Solution:

Proper Tensioning: Ensure all tensioning bolts and mechanisms are correctly adjusted according to the manufacturer’s specifications.

Support Bars: Check if support bars beneath the mesh are adequate and in good condition.

II. Reasons Related to Vibration Parameters:

Double banana sieve

Incorrect Stroke (Amplitude):

Reason: If the stroke (the distance the screen moves with each vibration) is too small, the material won’t be lifted and thrown forward effectively, especially coarser or heavier materials.

More about linear vibrating screen discharge slow detailed fine information can be clicked to visit: https://www.hsd-industry.com/news/linear-vibrating-screen-discharges-slowly/

Daily maintenance is crucial for the longevity and optimal performance of a linear vibrating screen. Neglecting these simple checks can lead to premature wear, inefficient screening, and costly downtime.

Linear Vibrating Screen Maintenance Tips

Double banana sieve

Here are some daily maintenance tips for your linear vibrating screen to ensure optimal performance and longevity:

1. Regular Visual Inspection:

Check for loose components: Vibrations can cause bolts, nuts, clamps, and other fasteners to loosen. Inspect and tighten them regularly. Pay close attention to the screen panels, motor mounts, and exciter connections.

Inspect the screen surface: Look for any signs of damage such as tears, holes, excessive wear, or blockages in the screen mesh or panels. Remove any debris or buildup.

Check the springs or rubber mounts: Ensure they are in good condition and not damaged or excessively compressed. Uneven compression can lead to instability.

Inspect the vibrating motor(s): Listen for unusual noises, check for excessive heat, and ensure the motor is securely mounted.

Check the V-belts (if applicable): Ensure they are properly tensioned, not worn or cracked, and aligned correctly.

Inspect the feed and discharge areas: Ensure they are clear of obstructions and that material flows freely.

Check for leaks: If your screen has a lubrication system, check for any oil or grease leaks.

2. Cleaning:

Clean the screen surface: Regularly remove accumulated material, dust, and debris from the screen surface using a brush or air blower. This prevents blockages and maintains screening efficiency.

Avoid using water or steam directly on electrical components or bearings.

Clean around the machine: Keep the area around the vibrating screen clean to prevent material buildup that could interfere with its operation or maintenance.

Single layer horizontal sieve

3. Lubrication:

Lubricate bearings: Follow the manufacturer’s recommendations for the type and frequency of lubrication for the vibrating motor and exciter bearings. Ensure proper greasing to minimize friction and prevent premature wear. Grease should typically be applied when the bearings are cool, often at the start of the workday.

Check grease lines: If your screen has a central lubrication system, inspect the grease lines for blockages or leaks.

4. Monitor Performance:

Listen for unusual noises: Pay attention to any grinding, knocking, or other abnormal sounds that could indicate a problem.

Check for excessive vibration: While vibration is normal, excessive or uneven vibration could signal loose components, unbalanced load, or other issues.

More detailed information about daily maintenance tips of linear vibrating screen can be clicked to visit: https://www.hsd-industry.com/news/linear-vibrating-screen-maintenance-tips/

Vibrating screens play a crucial role in material screening across various industries, relying heavily on electric motors to drive vibration. However, one common and potentially damaging issue is motor overheating. Overheating not only shortens the lifespan of the motor but also leads to decreased efficiency, unexpected downtime, and costly repairs. Understanding the causes, signs, and prevention methods of vibrating screen motor overheating is essential to ensure continuous, reliable operation and to extend equipment life.

Vibrating Screen Motor Overheating Solution

Single layer horizontal sieve

Immediate Actions (Safety First!):

Stop the Screen Immediately: Turn off the vibrating screen and ensure it cannot be accidentally restarted (lockout/tagout procedures are crucial here). Continuing to run an overheating motor can cause it to burn out or create a fire hazard.

Allow it to Cool Down: Let the motor cool down completely before attempting any inspection or maintenance. Do not touch the motor housing as it can be extremely hot and cause burns.

Troubleshooting and Investigation (Once the Motor is Cool):

Identify the Cause: Try to determine why the motor is overheating. Common causes include:

Overloading: Is the screen being fed more material than it’s designed for?

Voltage Issues: Is the voltage supply to the motor too high or too low?

Bearing Problems: Are the motor bearings worn out, lacking lubrication, or contaminated? This is a very common cause of motor overheating in vibrating screens.

Insufficient Lubrication: Lack of proper lubrication in the motor bearings or other moving parts of the vibrating mechanism can cause excessive friction and heat.

Excessive Lubrication: Surprisingly, too much grease can also cause overheating by creating excessive churning and heat buildup.

Improper Lubricant: Using the wrong type or grade of lubricant can lead to inadequate lubrication and overheating.

Dust and Debris Buildup: Accumulation of dust and material on the motor housing can act as insulation, preventing proper heat dissipation.

Poor Ventilation: Is the motor adequately ventilated? Obstructions around the motor can trap heat.

Loose Connections: Loose electrical connections can cause increased resistance and heat generation.

Mechanical Issues: Are there any mechanical obstructions or imbalances in the screen or drive mechanism that are putting extra load on the motor?

More detailed information about how to do vibrating screen motor overheating can be clicked to visit: https://www.hsd-industry.com/news/vibrating-screen-motor-overheating/